
Google Cloud 實作工作
坊：透過 GKE Autopilot
部署專屬於您的私人 AI
機器人服務

Denny Tsai
2024/10/24

Proprietary & Confidential

Google Cloud Proprietary & Confidential 2

Material

https://dennygoog.gitlab.i
o/workshops/run-gemma-
chatbot-on-gke-autopilot
/

https://dennygoog.gitlab.io/workshops/run-gemma-chatbot-on-gke-autopilot/
https://dennygoog.gitlab.io/workshops/run-gemma-chatbot-on-gke-autopilot/
https://dennygoog.gitlab.io/workshops/run-gemma-chatbot-on-gke-autopilot/
https://dennygoog.gitlab.io/workshops/run-gemma-chatbot-on-gke-autopilot/

Proprietary + Confidential

What is GKE Autopilot

GKE Autopilot provides the most fully
automated, secure, and scalable managed
Kubernetes service based on decades of
experience running containers at massive scale.

Focus on deploying your workloads and we’ll
take care of the rest.

Proprietary + Confidential

Proprietary + Confidential

One GKE - two modes of operations

Control plane provisioning
& management

Availability &
reliability

Patching &
upgrades

Security &
Networking
configuration

Monitoring &
management

Scaling
up & down

Worker nodes
provisioning &
management

DIY Kubernetes Service Google Kubernetes Engine (GKE)

Security &
Networking
configuration

Worker nodes
provisioning &
management

Standard mode
Managed Kubernetes with

configuration flexibility

Serverless
Kubernetes

Autopilot mode
Optimized Fully-Managed

Kubernetes, aka
“Serverless Kubernetes”

GKE Autopilot is a mode of operation in GKE
Mode of operation = level of control over a GKE cluster

Proprietary + Confidential

Proprietary + Confidential

Kubernetes (Portable)

Provider Specific API

Policy

Substrate

Workload configuration using portable K8s API resources.

The API, provided by the platform team, that allows more specialized
workloads to consume provider-specific hardware and capabilities.

Policy controls managed by the platform team to meet security, compliance,
reliability, and cost-efficiency requirements.

Provider-specific glue that translates application configuration to infrastructure
constructs. Essential for operation, requires effort to maintain.

Ap
pl

ic
at

io
n

Te
am

Pl
atf

or
m

 Te
am

Layers of a Kubernetes Platform

Proprietary + Confidential

Kubernetes (Portable)

Ap
pl

ic
at

io
n

Te
am

Pl
atf

or
m

 Te
am

Workload Definition
(PodSpec) Storage Requirements Application Scaling Service Dependencies

Policy
Security Best
Practices

Organizational Policy
and Compliance Network Policy Hybrid Interop

Configuration
Allowed Devices,
Hardware, and Quota

Provider Specific API
Device Selection
(GPU, Local SSD)

Placement
and Isolation

Standard Patterns /
Configuration Defaults

Compute Specialization
Family -> Architecture -> CPU

Substrate
Day 2
Upgrade + Security Patching

Cluster and Node
Configuration / Evolution

Capacity Management and
Rightsizing / Bin Packing Cost Attribution

Layers of a Kubernetes Platform
To accommodate all but the simplest workloads, platform teams must also provide a layer of
translation to expose provider specific capabilities necessary to fit advanced workload requirements.

Proprietary + Confidential

GKE Autopilot | Accelerator for Platform Teams

Kubernetes (Portable)

Provider Specific API

Policy

Substrate

Continue to manage workloads the way you’re used to. Autopilot retains
the full flexibility and power of the Kubernetes API and community.

Autopilot provides a standardized API that makes it easy to utilize provider
specific capabilities. The customization you need, less boilerplate.

Best practice configurations out-of-the box, with full freedom to extend with any
policies that are important to your business.

Autopilot manages the substrate, taking full responsibility for day-2 infrastructure
ops handling capacity, patching, and upgrade coordination.

Ap
pl

ic
at

io
n

Te
am

Pl
atf

or
m

 Te
am

Proprietary + Confidential

Platform

Dev

Node selection with traditional managed Kubernetes

Create
Workload

Configure nodeSelector
for configured hardware

Configure
Tolerate taint

Create
Node Pool

Define what
resources/hardware
you need

Configure taint

Node selection with traditional managed Kubernetes
Faster time to market

Proprietary + Confidential

Configure node selection with GKE Autopilot

Create
Workload

Configure nodeSelector
for configured hardware

Workload taint
toleration configuration
and application

Nodes provisioning
for your workload

Hardware
definition based on
your requirements
(compute-class)

Node taint
configuration and
application

Dev Platform

Proprietary + Confidential

Best price/ performance for
x86

Great default choice for
most compute

● Web serving / API
● Microservices
● Dev environments

General-Purpose

Consistent performance

Wide range of VM shapes
(high Mem/ CPU)

Very flexible and stable

● Web serving / APIs
● Microservices
● Stateful Apps (DB /

Cache
● Media/Streaming
● Back office Apps

Balanced

Best price/performance for
high throughput workloads

x86 / ARM

● Scaled-out
● Web serving / API
● Microservices
● Data log processing
● Media transcoding
● Large-scale Java

applications

Scale-out

Compute Class | Selecting specific hardware classes
Faster time to market. GKE Autopilot compute class let you set specific hardware
requirements for individual workloads.

Proprietary + Confidential

Series: N2/ N2DSeries: E family (Default) Series: T2/T2D

Accelerators

GPU/ TPU

GPU Sharing

● AI workloads
● Inference at large scale
● Small to medium Machine

Learning
● Batch

Series: T4 / A100 / L4 / H100

Accelerators

Proprietary + Confidential

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 pod: nginx-pod
spec:
 nodeSelector:
 cloud.google.com/compute-class: Scale-Out
 containers:
 - image: nginx
 name: nginx-container

Compute Class | Requesting compute classes

Proprietary + Confidential

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 pod: nginx-pod
spec:
 nodeSelector:
 cloud.google.com/compute-class: Scale-Out
 kubernetes.io/arch: arm64
 containers:
 - image: nginx
 name: nginx-container

Compute Class | Requesting architecture (ARM)

Proprietary + Confidential

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 pod: nginx-pod
spec:
 nodeSelector:
 cloud.google.com/compute-class: Scale-Out
 kubernetes.io/arch: arm64
 cloud.google.com/gke-spot: "true"
 containers:
 - image: nginx
 name: nginx-container

Compute Class | Requesting spot pods

Proprietary + Confidential

apiVersion: v1
kind: Pod
metadata:
 name: tensorflow
 labels:
 pod: tensorflow-pod
spec:
 nodeSelector:
 cloud.google.com/compute-class: "Accelerator"
 cloud.google.com/gke-accelerator: nvidia-tesla-a100
 containers:
 - image: tensorflow/tensorflow:latest-gpu-jupyter
 name: tensorflow-a100
 resources:
 requests:
 nvidia.com/gpu: "1"

Compute Class | Requesting GPU

Proprietary + Confidential

Compute Class | Define and use your own classes
Advanced node config options, including fall-back priorities with reconciliation
abstracted to a single node selector in the workload

Proprietary + Confidential

Define priorities, reconcile upNode selection prioritization
- Fall-back priorities for nodes
- Spot priorities with fall-backs
- Define by instance characteristics (machine type/family, size)
- Scaling profiles
- GPU/TPU support
- Named GCE reservations
- Node system configuration

Active reconciliation to top priorities
- Reconcile workloads to top priorities
- Subject to TTL, PDB, etc

Default classes
- Override Autopilot default class per namespace
- Even without nodeSelectors, workloads get desired node config

1. N2D-standard-16, spot

2. C2 spot, minCore: 8

3. N2D on demand, minCore: 8

4. Generic compute

Proprietary + Confidential

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 pod: nginx-pod
spec:
 nodeSelector:
 cloud.google.com/compute-class: custom-config
 containers:
 - image: nginx
 name: nginx-container

Compute Class | Define and use your own classes

apiVersion: autoscaling.gke.io/v1alpha1
kind: ComputeClass
metadata:
 name: custom-config
spec:
activeMigration:

optimizeRulePriority : true

nodePoolAutoCreation:

enabled : true

priorities:

- machineType : n2d-standard-16

spot : true

- family : c2

spot : true

minCores : 8

- family : n2d

spot : false

minCores : 8

Proprietary + Confidential

Proprietary + Confidential

 C
os

t o
pt

im
ize

d

Node

Traditional Managed Kubernetes
Node-based pricing

Unused Capacity
(poor bin packing, headroom)

Your workloads

OS
Reserved for in-cluster system

workloads (kube-system)

Your workloads

Resources you pay for

 Autopilot pod-based pricing

Provisioned Node vCPU/Mem Workload vCPU/Mem (via podSpec request)

